Sine Function Quadrature Rules for the Fourier Integral

نویسندگان

  • John Lund
  • JOHN LUND
چکیده

In this paper a numerical algorithm is proposed for the computation of the Fourier Transform. The quadrature rule developed is based on the Whittaker Cardinal Function expansion of the integrand and a certain Conformai Map. The error of the method is analyzed and numerical results are reported which confirm the accuracy of the quadrature rule.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient quadrature rules for a class of cordial Volterra integral equations: A comparative study

‎A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations‎. ‎The equations of this class appear in heat conduction problems with mixed boundary conditions‎. ‎The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes‎. ‎A comparative stud...

متن کامل

Numerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev ‎approximation

A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...

متن کامل

Single Exponential Approximation of Fourier Transforms

This article is concerned with a new method for the approximate evaluation of Fourier sine and cosine transforms. We develope and analyse a new quadrature rule for Fourier sine and cosine transforms involving transforming the integral to one over the entire real line and then using the trapezoidal rule in order to approximate the transformed integral. This method follows on from the work of Oou...

متن کامل

Complex Gaussian quadrature for oscillatory integral transforms

The classical theory of Gaussian quadrature assumes a positive weight function. We will show that in some cases Gaussian rules can be constructed with respect to an oscillatory weight, yielding methods with complex quadrature nodes and positive weights. These rules are well suited for highly oscillatory integrals because they attain optimal asymptotic order. We show that for the Fourier oscilla...

متن کامل

Application of CAS wavelet to construct quadrature rules for numerical ‎integration‎‎

In this paper‎, ‎based on CAS wavelets we present quadrature rules for numerical solution‎ ‎of double and triple integrals with variable limits of integration‎. ‎To construct new method‎, ‎first‎, ‎we approximate the unknown function by CAS wavelets‎. ‎Then by using suitable collocation points‎, ‎we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010